Trigeminal autonomic cephalalgias (TACs) (1) are a group of usually laterised, often highly disabling headaches now grouped in section three of the International Classification of Headache Disorders (ICHD) (2, 3).

The proposed revisions to ICHD-II would move hemi cranias continua from section four to section three based on lateralization, often prominent cranial autonomic features and imaging findings (4).

These syndromes are particular in expression and treatment, with oxygen being helpful in cluster headache (5) perhaps through a brainstem mechanism (6).

Indomethacin has a diagnostic effect on paroxysmal hemicrania (7) and hemicrania continua (8) perhaps through a mechanism involving nitric oxide synthase (9).

SUNCT/SUNA (10) with very often short-lasting attacks that can be triggered by a cutaneous input can be a highly disabling problem that needs much better study.

References


Peter James Goadsby

Peter Goadsby obtained his basic medical degree and training at the University of New South Wales, Australia. His neurology training was done under the supervision of Professor James W. Lance in Sydney. After post-doctoral work in New York with Don Reis at Cornell, with Jacques Seylaz at Universite VII, Paris, and post-graduate neurology training at Queen Square in London with the Professors C David Marsden, Andrew Lees, Anita Harding and W Ian McDonald, he returned to the University of New South Wales, and the Prince of Wales Hospital, Sydney as a consultant neurologist and was promoted to Associate Professor of Neurology.

He was appointed a Wellcome Senior Research Fellow at the Institute of Neurology, University College London in 1995. He was Professor of Clinical Neurology and Honorary Consultant Neurologist at the National Hospital for Neurology and Neurosurgery, Queen Square, London. He is now Professor of Neurology in the Department of Neurology, University of California, San Francisco and remains Honorary Consultant Neurologist at the Hospital for Sick Children, Great Ormond St, London. His major research interests are in the basic mechanisms of head pain in both experimental settings and in the clinical context of headache management. The work of the Headache Group involves human imaging and electrophysiological studies in primary headache, as well as experimental studies of trigeminovascular nociception. The aim is to understand what parts of the brain drive and modulate headache syndromes, and how those might be modified by treatment.